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Architectural Principles. We developed a modular sys-
tem addressing the key challenges underlying the task: (i)
visual navigation with a monocular camera in (ii) open-
world human environments, with (iii) low-frequency, high-
latency sensing and control. Unreliable sensor streams cou-
pled with noisy proprioception made accurate depth and
scale estimation in the monocular setting challenging. To
tackle (i), the choice was made to forgo 3D metric geometry
estimation and focus instead on traversability estimation
in 2D image space, relying on semantic image cues. To
generalise over the diverse scenes and appearance variations
of (ii), visual features pretrained on large-scale datasets are
used, and augmented with fine-tuning on select portions of
the FrodoBots-2K data. Owing to hardware limitations and
the unpredictability of latency, (iii) was harder to directly
address. The system instead focuses on handling navigation
failures induced by suboptimal path-finding and poor trajec-
tory tracking, which arise from the poor communications.
This is achieved by augmenting the navigation pipeline with
robust failure detection and recovery.

At a high level, the system (Figure 1) consists of per-
ception, control and failure detection and recovery modules.
The perception module estimates traversability from RGB
input, and also issues an egocentric direction vector to
the next waypoint. The control module selects kinodynam-
ically feasible trajectories aligned with the waypoint vector
and generates control commands. The failure detection and
recovery module is a supervisory monitor taking in raw
RGB and predicted traversability from perception to detect
failures, overriding the control module to execute heuristic
recovery behaviours when necessary.

Perception. Given the need to operate in open-world
human environments without reliable depth sensing due to
the monocular setting, visual traversability prediction based
on scene semantics was used. The perception module takes
an RGB image as input, and outputs a traversability mask
based on the input image, with traversability scores in
[0, 1]. Internally, a fast traversability estimator generates
an initial mask, which is then further postprocessed with
clustering heuristics to identify and strongly penalise likely
obstacles. The estimator uses pretrained DINO-ViT visual
features which enable strong generalisation over diverse
environments, and allow for sample-efficient training and
finetuning to adapt to new scenes.

To train an estimator for the wheeled FrodoBot config-
uration while capturing preferences on different terrains, a
pipeline for automatically labelling data from FrodoBots-2K
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was developed. Based on the fixed egocentric camera view,
the region where the robot is currently teleoperated onto as
the traversable region is segmented with Segment Anything
Model [1] prompted with the bottom central pixels. The
Side Adapter Network [2] filters out low-quality images with
motion blur and overexposure, by checking and discarding
images with no detected traversable areas.

Trajectory generation and control. Kinodynamically
feasible trajectories are chosen and tracked with a modi-
fied Dynamic Window Approach (DWA). DWA simplifies
system design by unifying local planning and trajectory
tracking, since it generates trajectories parameterised with
velocities to directly command the robot with. Its inputs are
an egocentric heading toward the next subgoal and the 2D
traversability mask, and it outputs (v, ω). Firstly, reactive
obstacle avoidance is improved by modifying DWA’s search
space to use more complex trajectory primitives. Trajectory
primitives are extended from simple arcs to multi-segmented
arcs. Similar to MPCs, each trajectory is rolled out for tsim
but only followed for ttrack < tsim. Secondly, trajectories
are projected onto the traversability mask using camera
intrinsics, to evaluate kinematic feasibility in the absence of
bird’s-eye view geometry information. A traversability score
is summed from pixel values in the mask that lie within the
trajectory inflated by the robot’s projected footprint.

Failure detection and recovery. The inevitability of
failures in the open world is a key principle of the system’s
design, necessitating a module to recover from navigation
failures. This monitors RGB input and traversability masks
for failures, then activates heuristic recovery behaviours
which override the navigation layer to reset the robot. It
maintains a severity level based on failure frequency which
balances between caution and aggressiveness of corrective
action. The module’s strategy is to take successively bolder
local actions to perturb the robot out of the failure state.

Two common failure modes are: (i) suddenly encounter-
ing untraversable areas (e.g. when blocked by a dynamic
obstacle); (ii) getting stuck in local minima (e.g. taking a
wrong turn into a dead-end). Detection of these modes is
approximated by detecting overall low traversability across
the mask, and detecting that the robot is immobile despite be-
ing commanded to move. Upon failure detection, the module
alternates among backtracking and perturbation behaviours.
Backtracking executes cached actions open-loop, while per-
turbations are local traversability-aware actions generated by
DWA with reduced goal weighting. The magnitude of these
actions increases with severity level. Competition results em-
pirically (Figure 1) show recovery to be crucial for escaping
local minima in cluttered urban spaces (e.g. benches, bushes



Fig. 1: The system deals with purely monocular navigation across diverse locations via traversability estimation with
pretrained models coupled with selection of kinodynamically feasible trajectories in image space, without explicit 3D
geometry reconstruction. Open-worldness and latency lead to inevitable failures, addressed by a high-level failure recovery
system for monitoring and execution of heuristic recovery behaviours when necessary.

etc.) and handling challenging areas with mixed terrains.
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