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Abstract— The Earth Rover Challenge (ERC) took place at
the 2024 IEEE/RSJ International Conference on Intelligent
Robots and Systems (IROS 2024) in Abu Dhabi, United Arab
Emirates. The aim of the challenge was to evaluate state-of-
the-art autonomous ground navigation systems to move mobile
robots through outdoor, real-world enviornments with a set
of low-cost onboard sensors (RGB cameras, inertia sensors,
wheel encoders, and GPS) and offboard computation enabled
by 4G communication. Specifically, the task was to navigate
standardized, four-wheeled, differential-drive ground robots
across the globe from predefined start locations to GPS goal
locations. Three teams from across the world participated in
the challenge. The competition results revealed insights into de-
ploying autonomous mobile robots in the wild without expensive
onboard sensors and computation as well as engineering of the
environments. In this article, we report the results and findings
of the 1st ERC at IROS 2024, present the approaches used by
the three teams, and discuss lessons learned from the challenge
to point out future research directions.

I. THE EARTH ROVER CHALLENGE

Autonomous mobile robot navigation has been a problem
studied by the robotics community for decades [1], [2].
Equipped with expensive onboard sensors and computers
(such as LiDARs and GPUs), existing navigation systems can
move robots from one point to another without collisions,
mostly in controlled lab environments [3]–[5], some in
real-world public spaces, potentially with highly engineered
environment, maps, and features [6]–[8]. However, deploying
cost-effective autonomous mobile robots with low-cost sen-
sors, e.g., RGB cameras, Inertia Measurement Units (IMUs),
wheel encoders, and Global Positioning System (GPS), es-
pecially in unseen environments, still requires extra research
and engineering effort. The Earth Rover Challenge (ERC)
aims to tackle such a challenge by providing standardized,
low-cost, mobile robot systems and offboard computation as
well as 4G communication infrastructure to navigate a fleet
of such affordable robots worldwide.
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Fig. 1: The 1st Earth Rover Challenge in Abu Dhabi.

A. ERC Overview

ERC took place as a conference competition at the 2024
IEEE/RSJ International Conference on Intelligent Robots and
Systems (IROS 2024) in Abu Dhabi, United Arab Emirates.
As an urban robotic navigation competition, various research
teams’ autonomous navigation systems compete against top
human gamers in a real-world “in the wild” setting. Both
AI teams or human gamers are tasked to remotely control
small-sized sidewalk robots deployed in various cities around
the world and undertake pre-defined navigation missions with
GPS location goals. To be specific, each team is given a four-
wheeled, differential-drive FrodoBot Zero robot around the
globe, equipped with front and rear RGB cameras, an IMU,
wheel encoders, and a GPS unit. Each navigation mission
is given a difficulty ranking beforehand, based on factors
such as diversity of terrain and level of dynamism in the
surroundings (e.g., cars, bicycles, and human pedestrians).
Both AI teams or human gamers aim to gain in-game points
based on this difficulty ranking and their progress of mission
completion for a given mission (measured by checkpoints
reached vs total number of checkpoints) within one hour.
In particular, AI teams are given additional leniency with
up to 3 tele-operated interventions although the total earned
points will be halved once an intervention had been used
during a mission. Before the competition at IROS 2024 in
Abu Dhabi, all AI teams are provided with practice trials
with robots in different cities worldwide and the FrodoBots-



2K dataset [9]. The final eight cities, however, are not all
seen during practice trials and in the FrodoBots-2K dataset,
as shown in Table I.

TABLE I: Cities Seen (✓) vs. Unseen (✗) in Practice Trials
and FrodoBots-2K Dataset.

Cities Practice Dataset

King’Ong’O (Kenya) ✓ ✗
Kisumu (Kenya) ✓ ✗
Liuzhou (China) ✓ ✓
Wuhan (China) ✓ ✓

Manila (Philippines) ✓ ✓
Port Louis (Mauritius) ✓ ✗
Singapore (Singapore) ✓ ✓

Abu Dhabi (UAE) ✗ ✗

B. ERC Results

Table II shows the abbreviated table of the final results
achieved by seven human gamers and three AI teams, i.e.,
Seoul National University (SNU), National University of
Singapore (NUS), and The University of Texas at Austin (UT
Austin). Overall, human gamers are found to be drastically
more proficient than the AI teams, with all 7 human gamers
ranking above the 3 AI teams. In fact, the lowest ranked
humans earned a final score of 36.0 points, versus the top
ranked AI earning a mere 15.2 points. For more details,
refer to Table III, with each of the table entry denoting
the difficulty level, successful checkpoints reached / total
number of checkpoints in a mission, mission completion
time, number of interventions (for AI teams), and final points
earned in that mission.

TABLE II: Abbreviated ERC Results.

Ranking Players Final Score

1 Human #1 (masterchi ) 42.0
2 Human #2 (gellyquin) 42.0
3 Human #3 (.swooshyy.) 42.0
4 Human #4 (fede14) 38.0
5 Human #5 (zionxstatic) 38.0
6 Human #6 (some1ne2220) 36.0
7 Human #7 (dnangel7343) 36.0
8 AI #1 (Seoul National University) 15.2
9 AI #2 (National University of Singapore) 13.7

10 AI #3 (University of Texas at Austin) 1.2

The competition witnessed many scenarios, where the
AI teams significantly underperformed their human coun-
terparts. For example, while many human players can easily
get a bearing of the robot’s whereabouts and its orientation,
many AI teams struggled to localize the robot at the start
of the mission, often being stuck for minutes before moving
beyond a few meters away from the starting point of the
mission. Furthermore, despite having the privilege of tele-
operated intervention by the human AI team members, the
robots still flipped over the edge of the sidewalk in a few
occasions, a mistake experienced human gamers will rarely
make. Finally, over-reliance on GPS or IMU data, which
could be highly inaccurate at times or slow to update, also

Fig. 2: Architecture of SNUVIN.

Fig. 3: Architecture of heading angle computation of the
Action Planner module. It is based on the Transformers
architecture. Tokens of front images are generated from
the feature embedder ψF , and tokens of satellite image are
generated from the feature embedder ψS . At last, the tokens
of GPS data are generated and mapped to high dimensions to
match the front and satellite images tokens (high dimensional
mapping function). This model is trained in a supervised
manner from the FrodoBots-2K dataset.

caused some of the AI teams to over-compensate in their
maneuvers or get confused of the robots’ location. In con-
trast, experienced human gamers, relying on video streams,
can quickly discern the robots’ whereabouts by ignoring the
faulty or not up-to-date GPS information displayed on the
map and successfully travel to next checkpoints.

II. COMPETITION TEAMS AND APPROACHES

In this section, we report the approaches of the three teams.

A. Seoul National University (SNU)

Overview. The SNU team designed their autonomous
navigation framework (SNUVIN) in a module-based manner
as shown in Fig. 2. For SNUVIN, a single front image, GPS
data, and checkpoints come as an input and the action comes
as an output. There are three main modules to SNUVIN:
costmap generation, localization, and action planner.

Costmap Generation. Firstly, the costmap generation
(CG) module generates the costmap that represents the
current environments around the robot. It is important for



TABLE III: Full Results. Each entry includes difficulty level, successful checkpoints reached / total number of checkpoints
in a mission, mission completion time, number of interventions (for AI teams), and final points earned in that mission.

King’Ong’O Kisumu Liuzhou Wuhan Manila Port Louis Singapore Abu Dhabi Total

masterchi L7, 14/14,
14:10, 7.0

L4, 8/8,
06:53, 4.0

L2, 4/4,
13:33, 2.0

L6, 8/8,
06:13, 6.0

L10, 10/10,
16:06, 10.0

L3, 12/12,
11:43, 3.0

L6, 8/8,
06:48, 6.0

L4, 11/11,
09:01, 4.0

42.00
(01:24:27)

gellyquin L7, 14/14,
14:13, 7.0

L4, 8/8,
07:24, 4.0

L2, 4/4,
13:31, 2.0

L6, 8/8,
05:59, 6.0

L10, 10/10,
15:30, 10.0

L3, 12/12,
11:37, 3.0

L6, 8/8,
10:44, 6.0

L4, 11/11,
07:55, 4.0

42.00
(01:26:53)

.swooshyy. L7, 14/14,
14:16, 7.0

L4, 8/8,
07:05, 4.0

L2, 4/4,
13:31, 2.0

L6, 8/8,
05:56, 6.0

L10, 10/10,
18:25, 10.0

L3, 12/12,
11:04, 3.0

L6, 8/8,
10:36, 6.0

L4, 11/11,
07:42, 4.0

42.00
(01:28:35)

fede14 L7, 14/14,
14:39, 7.0

L4, 8/8,
07:16, 4.0

L2, 4/4,
14:07, 2.0

L6, 8/8,
06:53, 6.0

L10, 10/10,
15:42, 10.0

L3, 12/12,
11:02, 3.0

L6, 8/8,
10:44, 6.0

L4, 9/11,
09:45, 0.0

38.00
(01:30:08)

zionxstatic L7, 14/14,
14:40, 7.0

L4, 8/8,
07:20, 4.0

L2, 4/4,
13:26, 2.0

L6, 8/8,
06:17, 6.0

L10, 10/10,
21:17, 10.0

L3, 12/12,
10:56, 3.0

L6, 8/8,
07:43, 6.0

L4, 10/11,
11:46, 0.0

38.00
(01:33:25)

some1ne2220 L7, 14/14,
14:13, 7.0

L4, 8/8,
07:02, 4.0

L2, 4/4,
13:21, 2.0

L6, 8/8,
06:01, 6.0

L10, 10/10,
16:31, 10.0

L3, 12/12,
11:02, 3.0

L6, 3/8,
04:00, 0.0

L4, 11/11,
08:48, 4.0

36.00
(01:20:58)

dnangel7343 L7, 14/14,
15:49, 7.0

L4, 8/8,
06:58, 4.0

L2, 4/4,
13:48, 2.0

L6, 8/8,
05:59, 6.0

L10, 10/10,
16:05, 10.0

L3, 12/12,
10:58, 3.0

L6, 3/8,
03:51, 0.0

L4, 11/11,
09:00, 4.0

36.00
(01:22:28)

SNU L7, 4/14, 3,
26:12, 1.0

L4, 7/8, 3,
32:59, 1.75

L2, 3/4, 0,
42:23, 1.5

L6, 8/8, 0,
27:02, 6.0

L10, 4/10, 3,
52:02, 2.0

L3, 8/12, 0,
29:00, 2.0

L6, 0/10, 0,
12:30, 0.0

L4, 5/11, 2,
46:37, 0.91

15.16
(04:28:45)

NUS L7, 7/14, 3,
84:02, 0.75

L4, 4/8, 3,
19:24, 1.0

L2, 4/4, 0,
39:40, 2.0

L6, 8/8, 2,
24:36, 3.0

L10, 8/10, 3,
51:49, 4.0

L3, 5/12, 3,
26:19, 0.62

L6, 2/10, 0,
14:07, 1.2

L4, 6/11, 3,
54:50, 1.09

13.66
(05:14:47)

UT Austin L7, 0/14, 3,
50:25, 0.0

L4, 2/8, 0,
61:29, 0.5

L2, 0/4, 1,
44:27, 0.0

L6, 1/8, 1,
47:19, 0.38

L10, 0/10, 0,
45:06, 0.0

L3, 1/12, 1,
29:13, 0.0

L6, 2/10, 3,
68:50, 0.0

L4, 1/11, 0,
63:30, 0.36

1.24
(06:50:19)

the robot to understand the environment in a 3D space both
structurally and semantically. Therefore, SNUVIN conducts
depth estimation to generate a 3D point cloud for structural
analysis and semantic segmentation to assign semantic in-
formation to every point in the point cloud from the input
image. Then SNUVIN voxelizes the point cloud to create
a 3D occupancy grid and by projecting along the z-axis,
a 2D grid is generated corresponding to the horizontal x-y
plane. Afterward, to represent the surrounding environment
information with several factors such as slope and roughness,
SNUVIN calculates the average and standard deviation of
surface normals of each grid cell. In addition, the final grid
cost is calculated by summing those various cost elements.
Through these procedures, a 2D costmap that represents
the structural and semantical information of the surrounding
environment is generated.

Localization. Secondly, the localization (LOC) module
estimates the current pose of the robot. Although the robot’s
position data is provided by GPS, it is at 1Hz and is not
suitable for real-time operation. Therefore, the SNU team
designed a LOC module that estimates GPS values for
positions where GPS signals are not available. The SNU team
used the ORB-SLAM3 [10], which is one of the widely used
visual SLAM algorithms, to estimate the pose of the robot.
However, ORB-SLAM3 can only estimate the relative pose,
while the target goals (checkpoints) are given in the form
of global coordinates. Therefore, the SNU team matched the
coordinates on the global level by adding the GPS data and
the relative odometry from the visual odometry output.

Action Planner. At last, the action planner (AP) module
gets a costmap and pose from the CG and LOC module,
respectively, and computes the action to reach the goal.
Additionally, a heading computation module is added to
calculate the robot’s target heading using only image and
GPS data in a learning-based approach. This is intended to
prevent the target heading angle calculation in the controller

from being incorrect due to pose errors resulting from GPS
noise or visual odometry. This pose error is difficult to solve
with the SNUVIN framework alone. Therefore, the SNU
team adopted a hybrid approach that solves the limitations of
the rule-based approach with machine learning by creating a
module based on Transformers. Their Transformers model
in Fig. 3 is trained with imitation learning from expert
navigation demonstrations. It gets the front image and GPS
data from teleoperation and satellite image from Google
map and computes the heading angle that the expert will
most likely set in a given situation. Finally, considering the
heading angle from the 2D costmap with pose, and the
heading computation module, the controller computes the
final action to the goal.

Summary. The SNU team designed their navigation AI
with SNUVIN, a hybrid rule-based and learning-based ap-
proach. The SNU team implemented SNUVIN with ROS
on a PC with Intel i7 CPU and RTX 4070 ti. SNUVIN is
able to operate at 10 Hz. However, as the raw data from the
teleoperation comes in at 3 Hz, SNUVIN operated at 3 Hz
during the competition.

B. National University of Singapore (NUS)

Overview. The NUS team developed a modular system,
addressing three key challenges underlying the task: (i) visual
navigation with a monocular camera, (ii) open-world nat-
ural human environments, (iii) low-frequency, high-latency
sensing and control. Unreliable sensor streams coupled with
noisy proprioception made accurate depth and scale estima-
tion in the monocular setting challenging. To tackle (i), the
choice was made to forgo 3D metric geometry estimation
and focus instead on traversability estimation in 2D image
space, relying on semantic image cues. To generalize over the
diverse scenes and appearance variations of (ii), the system
used visual features pretrained on large-scale datasets, with
fine-tuning on selected portions of the FrodoBots-2K data.



Fig. 4: The system deals with purely monocular navigation across diverse locations via traversability estimation with
pretrained models coupled with selection of kinodynamically feasible trajectories in image space, without explicit 3D
geometry reconstruction. Open-worldness and latency lead to inevitable failures, addressed by a high-level failure recovery
system for monitoring and execution of heuristic recovery behaviors when necessary.

Owing to hardware limitations and the unpredictability of
latency, (iii) was harder to directly address. The system
instead focused on handling navigation failures induced by
suboptimal path-finding and trajectory-tracking, which arose
from the poor communication. This was achieved by aug-
menting the navigation pipeline with robust failure detection
and recovery. These listed principles guided system design.

At a high level, the system (Fig. 4) consists of perception,
control, and failure detection and recovery modules. The
perception module estimates traversability from RGB input,
and also issues an egocentric direction vector to the next
checkpoint. The control module selects kinodynamically
feasible trajectories aligned with the vector to the next check-
point and generates control commands. The failure detection
and recovery module is a supervisory monitor taking in raw
RGB and predicted traversability from perception to detect
failures, overriding the control module to execute heuristic
recovery behaviors when necessary.

Perception. Given the need to operate in open-world
human environments without reliable depth sensing due to
the monocular setting, visual traversability prediction based
on scene semantics was used. The perception module takes
a RGB image as input, and outputs a traversability mask
based on the input image, with traversability scores in
[0, 1]. Internally, a fast traversability estimator generates
an initial mask, which is then further post-processed with
clustering heuristics to identify and strongly penalize likely
obstacles. The estimator uses pretrained DINO-ViT visual
features which enable strong generalization over diverse
environments, and allows for sample-efficient training and
fine-tuning to adapt to new scenes.

To train an estimator for the wheeled FrodoBot config-
uration while capturing preferences on different terrains, a
pipeline for automatically labeling data from FrodoBots-

2K was developed. Based on the fixed egocentric camera
view, the region where the robot is currently teleoperated
onto as traversable region is segmented with the Segment
Anything Model [11] prompted with the bottom central
pixels. The Side Adapter Network [12] filters out low-quality
images with motion blur and overexposure, by checking and
discarding images with no detected traversable areas.

Trajectory Generation and Control. Kinodynamically
feasible trajectories are chosen and tracked with a modified
Dynamic Window Approach (DWA) [2]. DWA simplifies
system design by unifying local planning and trajectory
tracking, since it generates trajectories parameterized with
velocities to directly command the robot with. Its inputs
are an egocentric heading toward the next subgoal and the
2D traversability mask, and it outputs linear and angular
velocities, (v, ω). Firstly, reactive obstacle avoidance is im-
proved by modifying DWA’s search space to use more com-
plex trajectory primitives. Trajectory primitives are extended
from simple arcs to multi-segmented arcs. Similar to Model
Predictive Control, each trajectory is rolled out for tsim
but only followed for ttrack < tsim. Secondly, trajectories
are projected onto the traversability mask using camera
intrinsics, to evaluate kinematic feasibility in the absence of
bird’s-eye view geometry information. A traversability score
is summed from pixel values in the mask that lie within the
trajectory inflated by the robot’s projected footprint.

Failure Detection and Recovery. The inevitability of
failures in the open world is a key principle of the system’s
design, necessitating a module to recover from navigation
failures. It monitors RGB inputs and traversability masks
for failures, then activates heuristic recovery behaviors which
override the navigation layer to reset the robot. It maintains
a severity level based on failure frequency which balances
between caution and aggressiveness of corrective actions.



Fig. 5: Flowchart of Texas Trailblazers (T2) software system. The system is divided in to four main groups: Remote SDK
interface, perception, control, and robot interface. Average runtime frequencies for each module are indicated in blue, message
latencies with low standard deviation are indicated as a single number, message latencies with high standard deviation are
indicated with a minimum and maximum latency range. Bidirectional service call communications are indicated in orange.

The module’s strategy is to take successively more aggressive
local actions to perturb the robot out of the failure state.

Two common failure modes are: (i) suddenly encounter-
ing untraversable areas (e.g., when blocked by a dynamic
obstacle); (ii) getting stuck in local minima (e.g., taking a
wrong turn into a dead-end). Detection of these modes is
approximated by detecting overall low traversability across
the mask, and detecting that the robot is immobile despite be-
ing commanded to move. Upon failure detection, the module
alternates among backtracking and perturbation behaviors.
Backtracking executes cached actions open-loop, while per-
turbations are local traversability-aware actions generated by
DWA with reduced goal weighting. The magnitude of these
actions increases with severity level. Competition results
empirically (Fig. 4) show recovery to be crucial for escaping
local minima in cluttered urban spaces (e.g., benches and
bushes) and handling challenging areas with mixed terrains.

C. The University of Texas at Austin (UT Austin)

System Design. The UT Austin team, Texas Trailblazers
(T2), approached the challenge using a hybrid, modular
approach composed of the following modules:

• Obstacle Avoidance. Hybrid module for geometric
obstacle avoidance.

• Terrain Preference Alignment. Learned module to
prefer driving on specific terrains.

• Global Localization. Classical module for localizing in
the global map frame.

• Path Planning. Hybrid module for planning global
paths and selecting viable local subgoals.

• Ackermann Motion Controller. Classical motion con-
troller for reaching local subgoals.

T2 utilized service requests to confirm that robots receive
all outgoing commands before resuming the planning and
control loop. This reduces the max operating frequency
to guarantee the planner does not execute on stale sensor
observations.

Obstacle Avoidance. The obstacle avoidance module gen-
erates a Bird’s Eye View (BEV) obstacle costmap for motion
planning and filtering out invalid local subgoals during a

goal proposal stage. T2 used Metric3Dv2 [13], a monocular
depth estimation model, and backprojected to 3D to construct
binary BEV costmaps.

Terrain Preference. T2 also employed PACER [14], a
terrain aware preference model, to predict a BEV terrain
traversability costmap from RGB images. This approach
avoids learning explicit classes of terrains by learning con-
tinuous embeddings through contrastive learning, improving
generalization to environments with diverse terrains. PACER
achieves generalization by training on a large dataset col-
lected on UT Austin campus along with synthetic terrain
textures. Prior to deployment, operators can load in a pref-
erence context, i.e., a set of terrains with a preference order,
to adjust the relative terrain costs without retraining.

Localization. T2 directly used GPS and magnetometer
measurements to estimate global pose. T2 assumed a Gaus-
sian noise model for the GPS and found this can adequately
correct GPS measurement errors to localize to globally
planned paths.

Planning and Controls. The planner plans in a global
frame using a handcrafted traditional global planner. Once
the waypoints are given, T2 first employed Openstreetmap to
plan a dense set of global goals to follow. The robot begins
by rotating to align the goal GPS within its field of view.
Once the goal is in view, the intermediate planner is triggered
on demand. The planner uses RGB-D images, obstacle cost
maps, and terrain costmaps to determine local subgoals. Once
the best local subgoal is selected, a motion planner selects
the best path rollout to follow for a fixed time window (3s).

Motivated by recent success in using VLMs for naviga-
tion, T2 blended VLM-based methods like PIVOT [15] and
CONVOI [16] to select local navigation subgoals. Similar to
PIVOT, BEV subgoal proposals are first generated which
are directly annotated on the image using number labels
by projecting the 3D points to the pixel space using a
projection matrix. Similar to CONVOI, T2 filtered out a
subgoal proposal if the subgoal corresponds to an area where
an obstacle is. Furthermore, T2 filtered out subgoals that
require crossing multiple segmentation masks to reach, which
was motivated by failure cases where the VLM would prefer



subgoals that the robot cannot navigate to, i.e., stairs. T2 used
a similar text prompt to PIVOT, which was shown to work
for robot navigation. The VLM was GPT-4o-mini, due to the
need for a fast, capable model.

T2 used a handcrafted recovery policy when failing to
identify valid local subgoals. Recovery begins with the robot
rotating itself in place and scanning its surroundings to
identify viable exploration targets by PIVOT. If a full rotation
does not yield any valid goals, the robot would attempt to
move backward as an approximation to backtrack its past
states.

III. DISCUSSIONS

Based on each team’s approach and the navigation per-
formance observed during the competition, we now discuss
lessons learned from the 1st ERC and point out promising
future research directions to push the boundaries of au-
tonomous mobile robot navigation in the wild.

A. AI cannot compete with humans yet

The most prominent observation from the 1st ERC is
that AI cannot compete with humans yet. In fact, all seven
human players significantly outperformed the three AI teams,
leaving a striking gap of 20.84 points between the last
human player and the first AI team (whereas the difference
between the first and last human player is merely 6.00
points). As mentioned above, simple skills for humans like
state estimation, avoiding flipping over the edge of sidewalks,
and distrusting unreliable sensor input are still far from reach
of AI systems.

B. Modular approach dominates this competition

All three AI teams adopted modular approaches to the 1st
ERC, instead of end-to-end learning [17], potentially due to a
combination of insufficient training data and the complexity
and dynamism of real-world navigation scenarios. We further
observe two points across all three navigation systems.

1) The Importance of a Planner or Controller: All teams
explicitly adopted a planner or controller, operating either in
metric or image space, to produce the final actions to drive
the robot. This stark contrast against the reported success
of purely learning-based action generation methods in many
academic papers showcases the crucial role of explicit plan-
ning and control and the importance to provide them with
appropriate world representation in real-world navigation
applications. Unlike simple lab spaces or controlled test
courses used for academic research, ERC’s target domain is
the real world in the wild, where out-of-distribution scenarios
will be frequently encountered and cause problems for end-
to-end learning methods trained only on a limited dataset.

2) Split over the Necessity of Explicit Geometric Rep-
resentation for Navigation: SNU and UT Austin adopted
explicit geometric representation in their modular systems
using RGB-to-depth reconstruction in the form of 3D point
cloud, 2D costmap, and BEV map. NUS explicitly avoided
3D metric geometry estimation and focused instead on
traversability estimation in 2D image space, relying on se-
mantic image cues. It is still an active debate whether explicit

3D geometric representation is necessary for navigation in
the wild, especially considering the lack of expensive 3D
LiDARs or depth cameras on affordable robot hardware.

C. Learning is an essential component for each team

Despite the lack of end-to-end learning approaches in the
1st ERC, machine learning is still widely used in the current
modular systems, i.e., to learn a module, not the whole
system. Such modules are mostly toward the perception side,
including depth reconstruction, semantic segmentation, and
feature extraction from RGB images, as well as heading
angle correction with the help of satellite images. However,
classical approaches are preferred and used in the down-
stream planning and control tasks. The current practices
and results of limiting the scope of learning only to the
perception tasks show the promises of learning even with
limited data and potentially reveal the lack of sufficient data
to broaden the learning scope, e.g., learning action generation
or learning end-to-end. Even when sufficient training data
is available in the future, why and how learning should be
applied to navigation still needs to be carefully considered
by the robotics community [17].

D. Failure recovery is critical

Environments in the wild are full of unexpected scenarios,
including blockage by dynamic obstacles or getting stuck in a
dead-end. Systems without error detection and handling may
simply repeat the same erroneous action for an unlimited
amount of time. Therefore, both recognizing such scenarios
and driving the robot out of them are essential for long-
duration and long-distance autonomous navigation tasks in
the wild. All three teams, especially NUS, adopted specific
error detection and handling techniques to recover from
failures during the competition.

E. Challenges of low-cost mobile robots in the wild

One unique feature of ERC is its adoption of low-cost
mobile robots to navigate the world. Such a feature is
expected to raise challenges in terms of primitive, low-quality
perceptual streams as well as latencies caused by the need
to off-load onboard computation to remote servers. While
the latter has been addressed by the FrodoBot and three
AI teams’ engineering effort to optimize and account for
latencies in their systems, problems due to the low-cost
sensors, especially when being complicated by a fleet of
robots, have been reported by the teams.

1) Cross-Robot Differences: Precise sensor calibration
on each robot is required by many classical systems, like
visual SLAM. For example, ORB-SLAM2 [18] and VINS-
mono [19] estimate robot pose by minimizing the projection
errors using the 3D map points estimated with the intrinsic
parameters, while DPVO [20] depends on intrinsic parame-
ters to project patches from the previous frames to the in-
coming frame using the estimated pose and depth; To resolve
scale ambiguity in visual odometry, sensor fusion with IMU
or wheel encoder is necessary and requires precise calibration
for each deployment. While calibration data is provided in



the FrodoBots-2K dataset, cross-robot differences in sensor
parameters introduce noises to the calibration and then,
e.g., cause the odometry system to lose track or the depth
or map reconstruction to become imprecise. To address a
fleet of low-cost robots with inevitable differences, potential
future solutions include online calibration quality monitoring
and re-calibration techniques that do not require dedicated
calibration procedure [21], such as utilizing Structure-from-
Motion to dynamically determine camera intrinsic parame-
ters during initialization.

2) Unreliable GPS: As observed in the challenge, GPS
quality varies across the globe and is of particularly low
quality for the robots located in, e.g., Abu Dhabi. Without
RTK fixation, blindly trusting unreliable GPS will signifi-
cantly jeopardize localization and odometry, causing trouble
for planning and control. Interestingly, such a problem has
also caused trouble for some human players to determine
the robots’ whereabouts and therefore where to drive, while
other human players know when to distrust compromised
GPS information. How to deal with noisy GPS of different
qualities in different places for accurate state estimation
remains a challenge for autonomous navigation systems.
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