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Abstract

While learning policies that navigate with rich visual information is a promising
approach to robot navigation, it remains a challenge to robustly detect and handle
their failures. Prior works often fail to (1) directly detect task-relevant failures
induced by the policy, or (2) to handle the failure in a robust and informed manner.
To this end, we propose FaRe, a framework for failure-resilience with learned visual
navigation policies, that augments such policies with task-relevant failure detection
and informed failure handling. Key to this is a novel unsupervised anomaly detection
and localisation approach that can be embedded in such policies during training,
with only mild changes to their architecture. We show through extensive real world
experiments on a representative, off-the-shelf behavioural learned policy that our
approach imbues it with the ability to robustly handle failures spanning a range of
scenarios, both inside and outside its training distributions.
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CHAPTER 1. INTRODUCTION

Chapter 1

Introduction
Visual navigation is an appealing approach to robot navigation, since it has

the potential to harness rich visual information about the environment [1, 24] from
readily available and cost-effective visual sensors [4]. In particular, end-to-end deep
learning has become a key means of implementing effective visual navigation policies,
because of its ability to capture task-relevant semantic information from visual
inputs [1], and its robust performance [20, 26]. However, such learned policies are
often black boxes that can make unreliable predictions without warning, especially
when presented with novel situations outside their training distribution. This can
induce navigation failures, by leading the robot into states from which the learned
policy is unable to autonomously complete its navigation task.

To address this shortcoming, we propose a simple yet effective approach to
imbuing learned visual navigation policies with failure-resilience (FaRe), which we
define as the ability to detect and handle failures. A major cause for failures under
data-driven learned policies is their unreliable predictions on inputs that lie outside
the distribution learned from the training set, i.e. anomalies [24, 8, 29]. A common
approach to detecting failures, which FaRe also takes, is using anomaly or novelty
detection [24, 7, 29]. However, prior works often rely on detectors external to the
policy that lack direct knowledge of what inputs are anomalies under the policy, and
are generally unaware of which parts of the inputs are relevant to the navigation
task, leading to task-irrelevant anomaly predictions and excessive pessimism [21].
To handle failures, most existing works terminate the task and request human
intervention [21, 14, 16] with some executing set prior behaviours to prevent or
recover from the failure [24, 29]. However, such failure-handling strategies often do
not exploit knowledge of the anomalies faced to take informed actions for recovery.
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CHAPTER 1. INTRODUCTION

Figure 1.1: FaRe-DEC running on the Spot robot. From top to bottom are robot
observations, whole scenarios, and the corresponding anomaly score. From left to
right are five time steps extracted from a real navigation scenario to illustrate how
our FaRe approach works. Our robot first tracks the path and avoids the human in
normal operation. Unfortunately, after avoiding the human, it turns into a corner
and is blocked by walls because the corridor is too narrow. Our method successfully
detects this situation as a potential navigation failure and executes the informed
recovery strategy guided by the anomaly localisation information, returning back to
normal operation automatically.

FaRe seeks to address both these issues with a system that robustly detects
and handles failures in an informed and predictable way. FaRe focuses on handling
navigation failures arising from anomalies, and its core building blocks are a novel
unsupervised anomaly detector and localiser that operate on the policies’ latent space.
Our key observation is that efficient and effective anomaly detection and localisation
can be enabled by well-structured latent representations of sensory inputs, obtained
by regularising policies with a variational information bottleneck objective [3]. Such
representations discard task-irrelevant factors and induce a structured latent space
in which distances are meaningful [22], which are properties that allow us to identify
potential navigation-related failures due to anomalies, i.e. potential failures exhibit
a greater distance from the prior distribution of regularisation compared to normal
inputs. FaRe also handles detected failures, by attempting recovery strategies that
exploit anomaly detection and localisation information to intelligently perturb the
robot locally or backtrack, before escalating to requesting human intervention if
needed.

We show that our approach of embedding anomaly detection and localisation
into learned policies enables more effective identification of anomalies that have an
impact on navigation. Through extensive real-world experiments, we find that FaRe
imbues a representative, off-the-shelf behavioural navigation policy DECISION [1]

2



CHAPTER 1. INTRODUCTION

with the ability to handle failures spanning different scenarios, both inside and
outside their training distributions.
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CHAPTER 2. LITERATURE REVIEW

Chapter 2

Literature Review

2.1 Learned visual navigation
Visual navigation involves navigating with rich, high-dimensional image inputs.

Classical robot systems need complex handcrafted pipelines to handle such inputs
and extract relevant geometric information from them [4]. In contrast, learning
visual navigation avoids manual algorithm design and better captures semantic
information from images [1]. Prior works explore learning collision predictors [24]
or traversability maps [13] which are then combined with classical planners for
navigation, or end-to-end policies that directly map visual inputs to control [1, 26].

Classical robot systems’ explicit, interpretable sensory representations and states
enable detection of certain types of navigation failures - e.g. inspecting a robot’s map
and pose lets us detect if it has gotten stuck in a corner and cannot reach its goal.
This is challenging with the black box latent representations of many learned policies,
motivating our approach to better structure the latent space and equip it with a
meaningful distance metric that provides information on the policy’s uncertainty
about completing a task. In particular, we focus on end-to-end learned policies that
are highly opaque owing to their lack of modularity. We apply FaRe to one of the
latest work DECISION [1], a state-of-the-art behavioural navigation policy with a
complex architecture that handles multimodality and temporal information.
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CHAPTER 2. LITERATURE REVIEW

2.2 Failure detection with learned policies
Detecting the failure of learned policies often comes down to quantifying the

uncertainty of the policy in its ability to complete the task [14, 24]. Various
approaches explored range from joint supervised learning of value functions together
with policies [14], to unsupervised anomaly or out-of-distribution detection. The
latter is a widely used method, which aims to identify if sensor inputs are drawn
from a distribution different from that of the training data. This can be achieved
by modelling the training distribution with generative models like normalising
flows [28, 6] and using their likelihoods as a metric, or by learning autoencoders and
thresholding on their reconstruction errors [24, 29]. In many of these works, the
detectors are trained apart from the policy using objectives unrelated to navigation.
Thus they may not accurately capture anomalies under the distribution learned by
the policy and may detect task-irrelevant anomalies like visual differences from the
training data that have no bearing on navigation [21]. Some other works attempt to
design policies that can estimate the uncertainty of their predictions using ensemble
methods [12] and Bayesian neural networks [21]. However, these methods can be
computationally expensive to run, and are meant to quantify variance in training
data rather than accurately estimating uncertainty for inputs far from the training
data [24].

FaRe is designed to enable lightweight and efficient detection of navigation-
related anomalies, without requiring any additional supervision apart from the data
used for learning policies with Imitation Learning (IL). In particular, FaRe detects
anomalies in the policy’s latent space, which is learned through IL and captures
navigation-related features, making detected anomalies likely to be failures related
to navigation. Detecting anomalies in the latent space without requiring additional
decoders [18] or other detector networks [24, 29] ensures that FaRe is lightweight
and practical for real-world onboard usage.

2.3 Failure handling with learned policies
In addition to detecting failures, several works also consider how to handle

failures. Among these, the common approach is to terminate the episode and
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CHAPTER 2. LITERATURE REVIEW

possibly request human intervention [14, 16, 21]. Other works consider how to
take corrective actions to prevent or recover the robot from a failure, such as by
falling back to a predefined “safe” prior behaviour [24] or returning to a default
position [29]. Notably, select systems combine both corrective action and termination
followed by interventions: MoMaRT first attempts recovery then requests human
intervention if needed, while [11] performs online learning of recovery policies based
on demonstrations accumulated from requested human interventions.

FaRe is a comprehensive approach to failure-handling that combines autonomous
corrective actions with requests for human intervention as a last resort. In contrast
to existing works, its corrective actions are not simply predefined default “safe”
behaviours, but are intelligent recovery strategies that attempt to prevent or recover
the robot from its failure state. In particular, we implement backtracking and local
perturbation behaviours which use anomaly detection and localisation information
to guide the robot away from identified anomalies in a predictable manner.

6



CHAPTER 3. METHOD

Chapter 3

Method

3.1 Problem formulation
We consider the problem of detecting and handling navigation failures induced

by learned visual navigation policies. Similar to prior works, we cast this as a
problem of detecting and handling anomalous inputs that lie outside the training
data. Specifically, we seek to build a system that uses learned policies for visual
navigation until an anomalous situation is detected. For example, a robot equipped
with DECISION [1] experiences a sensor malfunction, encounters a dead end where
no traversable path exists in the observation, or a dynamic object suddenly appears
very close to the robot. Since learned policies may yield unreliable predictions that
can cascade into navigation failures in such situations, the system should instead
execute recovery strategies that can prevent the robot from entering, or extricate the
robot from the anomalous situation. If such strategies fail to address the anomalous
situation, the system should terminate the navigation episode and seek manual
intervention from humans.

Our system should be able to augment existing learned visual navigation policies
with the ability to detect and handle anomalous situations. For a given navigation
policy π at timestep t, we seek to augment it to π̂(ot) = (at, Dt, Lt), where ot is
the RGB observation input, at is the control command output, Dt ∈ {0, 1} is an
indicator describing the occurrence of an anomaly, and Lt is a heatmap showing
where the corresponding anomaly is located in the current observation. We desire
a system Π containing π̂ and a set of recovery strategies R, such that Π(ot) = at

7



CHAPTER 3. METHOD

Figure 3.1: Overview of our failure-resilience framework

if input is not anomalous to π̂ (i.e. Dt = 0), and Π(ot) = R(Lt) = a′
t if input

is anomalous (i.e. Dt = 1). If the recovery strategies R do not succeed and an
anomalous situation continues to be detected, the robot should terminate the episode
and seek human intervention.

3.2 System overview
Our objective is to develop a framework for failure resilience with learned visual

navigation policies π. The system Π comprises two parts: normal operation with
augmented learned policy π̂ and failure handling to address abnormal situations
where the learned policy might fail. To detect and handle task-relevant anomalies
effectively, we embed two key components, anomaly detection and localisation
into the learned policy by regularising the policy with a variational information
bottleneck, without requiring additional supervision.

In normal operation, π̂ will concurrently yield an anomaly score each steps while
navigating. This enables the robot to transition seamlessly to failure handling
mode upon encountering anomalous states. In the failure handling phase, robot will
initially attempt self-recovery, executing recovery strategies R guided by anomaly
localisation to navigate out of anomalous situations. The anomaly score serves as
a metric for the success of recovery strategies. Robot will switch back to normal
operation upon successful recovery or eventually request human intervention if the
recovery remains unsuccessful after a predefined number of attempts.

8



CHAPTER 3. METHOD

Figure 3.2: The neural network architecture of FaRe-DEC

3.3 Anomaly detection
We use anomaly detection to identify situations potentially leading to navigation

failures. The explicit detection of anomaly is crucial for switching from normal
operation to failure handling and measuring the success of self-recovery. Our
approach involves structuring the latent representation of visual inputs by slightly
modifying the network architecture of a learned policy, to create a latent space with
meaningful distances that augments the policy with the ability to classify normal
inputs and anomalies. Similar approach has been used in classification task [2].
In this way, we embed the anomaly detection into a learned policy that ensures
the detector is learning the same data distribution as the policy, i.e. task relevant,
and does not add too much computational cost compared with building detectors
external to the learned policy.

The latent space is formed by regularising the policy using a variational informa-
tion bottleneck (VIB) [19] objective, which use Kullback–Leibler (KL) divergence
DKL to constrain the variational posterior to approximate a prior distribution during
training. Given a learned policy π(a|o) with input image observations o, we regularise

9



CHAPTER 3. METHOD

Figure 3.3: Visual explanation of our VIB heuristic. After adding VIB regularisation,
a structured latent space is formed where we can apply a decision boundary measured
by KL divergence to classify normal inputs and anomalies

it to π̂(a|o) by inserting a VIB after the convolutional feature extraction backbone
of π(a|o) to achieve task-relevant anomaly detection. We train the new policy π̂(a|o)
in β-VAE [17] form. We denote the regularised latent space as z, encoder of π̂(a|o)
as p(z|o), the decoder of π̂(a|o) as q(a|z), the loss for training the original policy
π(a|o) as Lpolicy. The KL regularisation constrains the variational posterior p(z|o) to
approximate an isotropic unit Gaussian distribution prior N (0, 1) during training:

L = Lpolicy + βDKL(p(z|o) ∥ N (0, 1)) (3.1)

Consequently, inputs lying inside the training distribution may be projected closer to
the Gaussian prior while anomalous inputs deviating from the training distribution
may be projected further, which can be measured by DKL in this newly structured
latent space z. A visual explanation 3.3 regarding the VIB regularisation is provided.
Heuristically, anomalies may have a higher DKL values. We leverage this property to
use DKL directly as our anomaly score. Moreover, inputs that have a relatively high
DKL represent that they are task-relevant anomalies for valid actions generation,
rather than naive anomalies based on image pixel space.

The total change of filtered anomaly score over a fixed window length is used as
anomaly detection criterion during deployment. At each timestep t the augmented
policy π̂ will yield an anomaly score dt = DKL together with action output at in
normal operation. We pass dt through a Kalman filter initialised with identity matrix

10



CHAPTER 3. METHOD

Figure 3.4: Anomaly localisation with FaRe-DEC

to get filtered anomaly score d̂t and set the total change of d̂t over a fixed window
length td, d̂t − d̂t−td

, as the anomaly detection criterion. The detection threshold ϵ

and td are set as hyperparameters which can be tuned to balance sensitivity and
robustness. This criterion is better than applying a hard threshold on the anomaly
score since our VIB regularisation operates as a heuristic that lacks a strict unit
Gaussian constraint. Consequently, the DKL values, which distinguish anomalies
from normal inputs, may exhibit slight variations across different environments. Our
difference-based criterion is designed to adapt to these variations, providing a more
robust threshold. Our design is based on the assumption that robot always start in
a normal condition with Dt=0 = 0 and environment will change smoothly during
normal navigation process.

if Dt−1 = 0, Dt =


0 if d̂t − d̂t−td

≤ ϵ

1 if t ≥ td, d̂t − d̂t−td
> ϵ

(3.2)

11



CHAPTER 3. METHOD

3.4 Anomaly localisation
Merely detecting anomalies is insufficient for ensuring failure resilience. It is

essential for robot to pinpoint the locations in current observations causing potential
policy failures. Therefore, we incorporate anomaly localisation to perform a more
predictable, efficient and safer failure handling.

Since the whole structure of our regularised learned policy is differentiable 3.2, if
an anomaly is detected, i.e. Dt = 1, at each timestep we can backpropagate the
high anomaly score dt to the last convolutional layer and apply Grad-CAM[25] to
obtain a heatmap Lt representing anomaly localisation.

Specifically, after the forward pass and backpropagation we can obtain feature
map activations of the convolutional layer A ∈ Rn×h×w and gradients of anomaly
score with respect to the activations ∂dt

∂Ak , where Ak is the kth feature channel of A.
Then we compute neuron importance weights αk by global average pooling:

αk = 1
Z

h∑
i=1

w∑
j=1

∂dt

∂Ak
ij

(3.3)

where Z = h × w. This αk captures the importance of feature channel k for our
anomaly score. Finally we perform a weighted combination of Ak and apply ReLU
to it since we are only interested in the features that have a positive influence on
dt. After scaling to the same spatial size as the input, we get a heatmap Lt that
represents task-relevant anomaly localisation.

Lt = Scaling(ReLU(
n∑

k=1
αkAk)) (3.4)

3.5 Failure handling
The failure handling aspect of FaRe is designed to address abnormal situations

where the learned policy might fail. It is comprehensive and encompasses two phases,
self-recovery and requesting human intervention, guided by the information provided
by our anomaly detection and localisation components.

12
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Figure 3.5: Self-recovery module

3.5.1 Self-recovery

Autonomous prevention or recovery from failure states is the initial objective
after encountering anomalies (Dt = 1). Our self-recovery strategy R aims to avoid
anomalous regions in current observation ot that might cause navigation failure given
Lt. We divide the anomaly localisation heatmap horizontally into three equal-sized
bins, and measure the anomaly belief of each bins bal, bam, bar through a pixel
counting heuristic. Lt is converted into a binary image using Otsu’s method [23] and
we count the number of highlighted pixels of each bins cal, cam, car. If the number
is above a threshold a, the corresponding bin is marked as anomalous.

bap =


cap

a
if cap ≤ a

1 if cap > a
, p ∈ [l, m, r] (3.5)

An action selection heuristic is employed based on the anomaly belief of each
region, determining the appropriate recovery action from predefined options: rotate
left, rotate right, stepping, and backtrack. Action rotate left, rotate right and stepping
are hard-coded and angularly constrained to perform perturbation without affecting
the high-level task. Action backtrack is implemented with a fixed length action cache

13



CHAPTER 3. METHOD

Algorithm 1: Recovery strategies R(Lt).
Input: anomaly localisation heatmap: Lt

Output: recovery_action
1: Function R(Lt):
2: bl, bm, br ← pixel counting heuristic(Lt)
3: if bl = bm = br = 1 then
4: recovery_action ← backtrack
5: else if min(bl, bm, br) = bl then
6: recovery_action ← rotate left
7: else if min(bl, bm, br) = br then
8: recovery_action ← rotate right
9: else

10: recovery_action ← stepping
11: return recovery_action

that records past ta steps of action. The detail of our action selection heuristic is
shown in Algorithm 1

During self-recovery, the anomaly score dt is continuously monitored each timestep
to measure the success of R. In normal operation, the robot records past td steps of
anomaly score. When an anomaly is detected, given our anomaly detection criterion
it represents that our robot gets into an anomalous state from normal. Thus, the
first tn steps of recorded anomaly scores are able to stand for the anomaly score
value in normal state. Our success recovery criterion is when dt drops back to the
value level observed in normal operation. Suppose the robot detects an anomaly at
timestep t0, the transition is stated as 3.6. In this way, FaRe is able to execute a
series of intelligent self-recovery actions in an informed and predictable way while
encountering anomalies.

if Dt−1 = 1, Dt =


0 if dt <

∑t0−td+tn
p=t0−td

dp

tn

1 if dt ≥
∑t0−td+tn

p=t0−td
dp

tn

(3.6)

3.5.2 Requesting human intervention

If the robot fails to self-recover within T steps or backtrack action exceed ta

steps, FaRe will terminate the self-recovery and request human intervention. Human
experts will be informed with the current observation, anomaly localisation heatmap
and anomaly beliefs to take over the irrecoverable situation or improve the system.

14
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Chapter 4

Experiments

We seek to answer the following questions: (1) How well can FaRe detect and
localise anomalies? (2) Do FaRe’s design choices enable more efficient and effective
detection and localisation of navigation-related anomalies than prior methods?
(3) How does FaRe’s VIB regularisation affect performance of a learned visual
navigation policy? (4) Can FaRe enable a learned policy to robustly detect and
handle navigation failures?

4.1 Experimental setup
We run our experiments on a Boston Dynamics Spot robot equipped with 3 Intel

RealSense D435i cameras with a combined FoV of 140◦, with all software running
onboard an Nvidia Orin AGX. Our tests focus on augmenting a representative,
off-the-shelf learned policy DECISION [1] with FaRe, i.e. FaRe-DEC. DECISION is
a behavioural navigation policy which has an architecture to capture multimodal
behaviours with temporal information. We choose it to demonstrate that FaRe is
effective even on models with recurrent elements and a complicated structure.

4.2 Taxonomy of failures
We first introduce a taxonomy of failures 4.1 and a specific illustration of our

training data 4.2 to provide a clearer understanding for evaluating our method.
Failures are categorised into 1) failures of input, and 2) failures of learned

policy. The latter is further divided into failures attributable to inductive bias of
the policy model and those stemming from training data. Our experiments focus

15
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Figure 4.1: Taxonomy of failures for learned visual navigation policies

Figure 4.2: Taxonomy of failures in terms of data

on the input and data aspects in the taxonomy without taking inductive bias into
consideration, since failures due to inductive biases are rare in our navigation setting.
For instance, the specified number of time steps for the ConvLSTM backbone within
the DECISION policy is an inductive bias. However, this setting is unlikely to lead to
failures because it has been set large enough to accommodate the necessary historical
information required by the policy to handle partial observability in navigation
tasks.

Input failures in visual navigation correspond to sensor malfunctions, for example,
camera dead or extreme lighting conditions. For the data aspect, we analyse the
characteristics of training data for learned visual navigation policy along two axis,
static and dynamic. As depicted in 4.2, along the static axis from left to right

16
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are observations contain traversable path to do not contain traversable path, along
the dynamic axis from bottom to top are observations do not contain dynamic
objects nearby the robot to contain objects nearby. In order to train a behavioural
policy conditioned on high level intentions capable of tracking traversable paths and
avoiding obstacles in advance, all the data that have been collected for DECISION
training adhere to the rule of including traversable paths while maintaining a clear
space around the robot. Then all the other areas in this static-dynamic plain
represent potential failures given the training dataset.

4.3 Anomaly detection and localisation perfor-
mance

We aim at answering question (1) and (2) in this section. We collect 120
trajectories featuring different failure cases in various environment to evaluate our
method and two baseline approaches offline. Given our taxonomy, there are 40 failure
cases of each of the three types: not traversable, traversable but have dynamic objects
nearby, and sensor failure. For each type, we collect 20 trajectories from within the
training distribution and 20 from outside. Each trajectory comprises approximately
8 seconds of normal data followed by about 2 seconds of the corresponding type of
failure data with a frequency of 10 Hz. We record the initial time frame t1 when a
potential navigation failure occurs, and the binary anomaly status (anomalous or
normal) of the three bins of observation (as described in the last chapter) conceptually
as the ground truth.

We utilise these trajectories to quantify the false positive (fp), true positive (tp)
and false negative (fn) results for anomaly detection and localisation. For anomaly
detection, if an anomaly is detected before t1, we label the trajectory as fp. If
an anomaly is detected after t1, we label the trajectory as tp. If no anomaly is
detected until the end of the trajectory, we label the trajectory as fn. For anomaly
localisation, if the ground truth of a bin is anomalous and the predicted belief is 1,
we label this bin as tp. If ground truth is anomalous but the predicted belief is less
than 1, we label this bin as fp. If ground truth is normal, the predicted belief is 1,

17
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Figure 4.3: Sampled failure cases. The left column of images are failure cases
occurred inside training environments, the right column are outside. From top to
bottom are three failure types, not traversable, traversable but have dynamic objects
nearby, and sensor failure.

we label this bin as fn. Precision and recall metrics are then calculated as follows:

Precision = tp

tp + fp
Recall = tp

tp + fn
(4.1)

Our baseline methods include:

• VAE(Recon): A Variational Auto Encoder [19] model trained with image
reconstruction loss and KL divergence regularisation aside from the learned
policy. Anomaly score is derived from image reconstruction error, and anomaly
localization heatmap is based on pixel error map.

• VAE(KL): Utilises the same VAE model as VAE(Recon) but employs KL
divergence as the anomaly score. Anomaly localization is carried out similarly
to FaRe-DEC.

We select VAE(Recon) as a representative of a variety of anomaly detection
and localisation methods leveraging reconstruction-based generative models [24, 29].
Additionally, we include VAE(KL), which employs the same anomaly detection and
gradient-based localisation method as FaRe-DEC, to assess the efficacy of detectors
and localisers external to the learned policy in identifying task-relevant anomalies
compared to our embedded approach.

18
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Table 4.1: Performance of anomaly detection and localisation

Method InD OoD Add.
params

Add.
execution timePrecision Recall Precision Recall

VAE(Recon) Det 0.31 0.41 0.36 0.30 123.46M 0.016
Loc 0.71 0.49 0.69 0.40 123.46M 0.020

VAE(KL) Det 0.74 0.60 0.69 0.51 123.46M 0.016
Loc 0.87 0.47 0.83 0.41 123.46M 0.071

FaRe-DEC Det 0.93 0.74 0.86 0.69 6.16M 0.006
Loc 0.91 0.57 0.86 0.48 6.16M 0.049

All models, including our method and the baselines, are trained on the same
dataset in β-VAE form. For the baseline VAE model, we adopt ResNet50 [15] as
the encoder and a series of deconvolutional layers as the decoder. For all models,
the dimension of the variational bottleneck to set to 1024, with a balancing factor
β=1e-6. The hyperparameters are tuned to simultaneously uphold satisfactory
control performance for FaRe-DEC while ensuring effective reconstruction of image
observations for VAE(Recon) and VAE(KL). One trick for FaRe training is to make
the policy loss converge to a similar value as the original policy training. All the
other training details are consistent with those outlined in the DECISION paper.

We compare four metrics, precision, recall, additional parameters and additional
execution time (s) of all methods for anomaly detection and localisation respectively.
The last two metrics mean that how many additional parameters or execution time
is needed to perform anomaly detection or localisation. All tests are done in one
RTX 2080Ti GPU.

As shown in the table 4.1, our FaRe-DEC achieve the best performance in terms of
navigation related failure detection and localisation both inside and outside training
distribution. We observe that for VAE(Recon), the false positive rate is extremely
high because of detecting task-irrelevant anomalies, for instance, a fire extinguisher at
one side of the corridor. And the reconstruction method can reconstruct navigation
related anomalies that have simple visual feature well, for example a plain wall
ahead of the robot, resulting in false negative. VAE(KL) perform generally better
than VAE(Recon), which indicates that KL divergence could be a better metric than
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Table 4.2: Performance of anomaly detection and localisation with different β factor

Method InD OoD
Precision Recall Precision Recall

β = 1 Det 0.14 0.25 0.06 0.08
Loc 0.49 0.20 0.47 0.18

β = 1e− 3 Det 0.89 0.71 0.86 0.52
Loc 0.87 0.51 0.82 0.38

β = 1e− 6 Det 0.93 0.74 0.86 0.69
Loc 0.91 0.57 0.86 0.48

β = 1e− 9 Det 0.13 0.19 0.07 0.17
Loc 0.57 0.38 0.59 0.47

reconstruction error in navigation context. Furthermore, FaRe-DEC requires the
least additional parameters and is the most efficient method for anomaly detection,
which is required for every timestep. Although it is more time consuming compared
with using pixel error to localise anomalies since FaRe-DEC needs backpropagation,
anomaly localisation is not as frequently used as detection and is still able to satisfy
the real-time requirement in real world deployment.

The experiments prove that FaRe is efficient and is able to detect and localise
task-relevant anomalies effectively. Our FaRe-DEC outperforms the baselines in
terms of both detection and localization, exhibiting superior precision and recall
while requiring fewer additional parameters and little additional execution time.

We conduct another ablation study to show how the regularisation factor β

affects the anomaly detection and localisation performance in table 4.2. We train
our FaRe-DEC model with different values of β, and compute their precision and
recall rate on the offline dataset. Results show that when β = 1e − 9, the effect
on the latent representation is barely noticeable, as the regularisation factor is too
small. When β = 1e− 6, FaRe-DEC achieves the best performance, and β = 1e− 3
shows a comparable result. If the regularisation is too strong, i.e. β = 1, the
performance becomes much worse due to posterior collapse, which is commonly
observed in previous literature [9, 5, 27, 30].
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Table 4.3: Performance of DECISION vs FaRe-DEC(policy)

Method Task i Task ii Task iii
SR CR SR CR No. of human interventions

DECISION 90 98.8 90 98 6
FaRe-DEC

(policy) 80 98 80 96 8

4.4 Influence of VIB regularisation on policy
We aim at answering question (3) in this section. In these experiments we disable

the anomaly detection and failure handling part of FaRe-DEC in order to compare
only the performance of learned policy before and after VIB regularisation. Three
tasks are designed to evaluate the ability of DECISION and FaRe-DEC(policy):

• Task i: Adversarial pedestrian avoidance. All settings are the same as in the
DECISION paper [1].

• Task ii: Blind-spot object avoidance. All settings are the same as in the
DECISION paper.

• Task iii: Long range navigation, where the robot is tasked with covering a
distance of approximately 600 meters outdoor.

We compute the same metrics as in the DECISION paper for Task i and Task ii,
success rate (SR %) and completion rate (CR %), while Task iii is quantified based
on the number of human interventions required.

From the results 4.3, we can see that FaRe-DEC(policy)’s performance is slightly
worse than DECISION, indicating that our regularisation method may impact policy
performance to some extent. However, it is important to note that this test solely
aims to examine the impact of VIB on policy performance without incorporating
failure detection and handling. While the observed performance degradation is
minimal and unlikely to be noticeable during real world deployment, the subsequent
section demonstrates that FaRe-DEC is proficient in detecting and handling various
failures that DECISION may struggle to address effectively and efficiently.
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Figure 4.4: The navigation route of Task iii

4.5 Navigation failure detection and handling per-
formance

We aim at answering question (4) in this section. Most importantly, we want
to show how robustly and efficiently can FaRe-DEC detect and handle navigation
failures in the real world. For quantitative analysis, similar to question (1) we choose
three types of failures from taxonomy to ensure our experiments have a decent
coverage of failure situations. More than question one, we give each type of failures
a label of recoverable or irrecoverable, for better evaluation of failure handling
performance. For each label of each type of failures, we pick one scenario and repeat
it 20 times, recording the success rate (SR %) of failure detecting, failure handling
and handling time (s). Successful detection is defined as detect the anomaly within
2 seconds after a potential failure occurs without collision. Successful handling for
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recoverable failures is defined as prevent or recover from a navigation failure and
complete the original task without collision. Successful handling for irrecoverable
failures is defined as eventually requesting human intervention without collision.
Furthermore, when evaluating failure handling, we only focus on successful detection
cases in order to isolate the performance of the failure handling from that of the
failure detecting. If the failure is not detected in one run, we discard it and restart.
The discarded runs are not counted in the total number of executed runs. We design
a 10-meter test route for each type of failures, where the robot initiates from the
starting point and endeavors to reach the goal point. Along the navigation task, our
robot encounters the following failures listed below.

• Sensor failure: Sensor failures are irrecoverable. We simulate the sensor
failure with all zero inputs.

• Not traversable: An observation that does not contain traversable path may
be either recoverable or irrecoverable. For recoverable cases, we choose to place
an obstacle 0.2m in the direction of robot’s heading to block its view of any
traversable area while navigating and stay still. Ideally, our robot could detect
the failure, avoid the obstacle and return to the path using a combination of
backtracking and perturbation manoeuvres without collision. For irrecoverable
cases, we choose to drive the robot towards a closed door. Ideally, our robot
could request human intervention without collision.

• Traversable but have dynamic objects nearby: A observation that
contains dynamic objects nearby is recoverable since there is still traversable
path in robot’s observation. We choose to place an obstacle 0.2m in the
direction of robot’s heading to block half of the robot’s view. Ideally, our
robot could detect the failure, avoid the obstacle and return to the path by
perturbation.

The experiment results 4.4 show high failure detecting and handling success
rate and reasonably low time to handle several types of failures that DECISION
encounters.

The typical examples of success failure detection and handling for each type
of failures are presented in Figure 4.5. The regular RGB image indicates normal
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Table 4.4: Real world performance of FaRe-DEC

Test cases Detecting SR Handling SR Handling Time
Sensor failure (irrecoverable) 100 100 18.35

Not traversable recoverable 90 80 5.10
irrecoverable 100 90 14.78

Trav. but objects nearby (recoverable) 85 85 11.11

operation, whereas the heatmap image, representing anomaly localization, indicates
failure handling. The corresponding recovery strategies generated from heatmap are
also listed in the figure. The first 4.5(a) and third row 4.5(c) depict two irrecoverable
failure cases: sensor failure and encountering a closed door ahead of the robot. FaRe-
DEC successfully detects the failures and resorts to requesting human intervention,
as neither self-recovery action can restore the robot to normal operation. The second
and 4.5(b) fourth row 4.5(d) illustrate two recoverable failure cases: the robot’s view
is obstructed by objects, fully blocking any traversable area, and the observation
contains traversable areas but with dynamic objects nearby. FaRe-DEC successfully
detects the failures and self-recover through a series of backtracking or perturbation
strategies, generated from heatmaps which highlight the task-relevant anomalous
regions in the observation. Our robot finally returns to normal operation and reach
the navigation goal point without collision. The typical failure scenario in our failure
handling arises when FaRe-DEC switches back to normal operation but still fails
to entirely avoid the anomalies, potentially resulting in collisions at the robot’s
periphery.

We have also conducted another qualitative experiment, to mimic failures that
may frequently happen in real navigation scenarios. We can observe that FaRe-DEC
is able to help with robot visual navigation in real scenarios 1.1.

In conclusion, FaRe-DEC has the ability to detect and handle various failures in
the real world robustly and efficiently. Moreover, FaRe-DEC enables more robust
navigation by successfully recovering from failures along the way in real navigation
scenarios.
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(a) Sensor failure (irrecoverable)

(b) Not traversable (recoverable)

(c) Not traversable (irrecoverable)

(d) Trav. but objects nearby (recoverable)

Figure 4.5: Qualitative analysis of FaRe-DEC. From top to bottom are the four real
world test cases corresponding to Table 4.4, arranged in the same order. From left
to right are five time steps down-sampled from recorded real-world experimental
result. Robot observation, anomaly score, anomaly localisation result, system status
and recovery strategy of each step are presented. In the anomaly localization results,
bins where the anomaly belief equals one are highlighted with a red circle, indicating
them as anomalous. If not all bins are anomalous, the bin with the minimum
anomaly belief is highlighted with a green circle.
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Chapter 5

Conclusion

In this work we propose FaRe, a framework for failure-resilience with learned
visual navigation policies and demonstrate its performance on FaRe-DEC. Through
extensive ablation study and real world experiments, we have shown that our unsu-
pervised, embedded anomaly detector and localiser excels at identifying navigation-
related failures. Moreover, FaRe efffectively enables DECISION to robustly and
efficiently detect and handle real world navigation failures. Our work introduces
a novel system design paradigm with learned policy for visual navigation, which
also opens up several avenues for future research into failure resilience. For example,
while the current approach is unsupervised and the failure concept for learned
policies rely on the training dataset, extending it to combine human ground truth
feedback to update the failure concept could be a good way to enhance human-robot
interaction and fortify failure resilience. Additionally, extending the core idea of this
framework to encompass the latest imitation learning algorithms, such as diffusion
policy [10], holds promise for further advancements.

A potential improvement of our work is to replace the pixel counting heuristic
in failure handling with a lightweight, learnable classifier as shown in figure 5.1.
In this way, the recovery strategy can be chosen more desirably, even under the
circumstances where the heatmap is slightly noisy. Since this is a mapping from
grey-scale heatmap to binary classification result, it could be learned with little data
labelling and generalised to different failure situations compared to directly learning
a mapping from raw observation to control, without losing the anomaly information
from the original learned policy. Moreover, this classifier can be continuously updated
and learned if the failure handling fails.
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Figure 5.1: Potential improvement of our system

Our future plans also include extending this framework to accommodate a wide
range of CNN-based learned policies. We aim to apply FaRe to policies with diverse
structures and intended for various navigation tasks, including but not limited to the
General Navigation Model (GNM) [26], which incorporates image goal conditioning
for object-goal navigation.
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